Frequency Control of Isolated Hybrid Power Network Using Genetic Algorithm and Particle Swarm Optimization
Authors
Abstract:
This paper, presents a suitable control system to manage energy in distributed power generation system with a Battery Energy Storage Station and fuel cell. First, proper Dynamic Shape Modeling is prepared. Second, control system is proposed which is based on Classic Controller. This model is educated with Genetic Algorithm and particle swarm optimization. The proposed strategy is compared with Classic Controller. The robustness of suggested strategy in the front of nature of wind energy and Environmental conditions led to Parameter changes and load changes. It was investigated and simulated in MATLAB and the result was observed. As a result of simulation, control system has reflected a better behavior rather than load changes. The proposed methods are applied on various situations with actual climate data.
similar resources
frequency control of isolated hybride power netwotk using genethic algorithm and particle swarm optimization
this paper, presents a suitable control system to manage energy in distributed power generation system with a battery energy storage station and fuel cell. first, proper dynamic shape modeling is prepared. second, control system is proposed which is based on classic controller. this model is educated with genetic algorithm and particle swarm optimization. the proposed strategy is compared with ...
full textLoad Frequency Control in Power Systems Using Improved Particle Swarm Optimization Algorithm
The purpose of load frequency control is to reduce transient oscillation frequencies than its nominal valueand achieve zero steady-state error for it.A common technique used in real applications is to use theproportional integral controller (PI). But this controller has a longer settling time and a lot of Extramutation in output response of system so it required that the parameters be adjusted ...
full text7 Hybrid Genetic : Particle Swarm Optimization Algorithm
This chapter proposes a hybrid approach by combining a Euclidian distance (EU) based genetic algorithm (GA) and particle swarm optimization (PSO) method. The performance of the hybrid algorithm is illustrated using four test functions. Proportional integral derivative (PID) controllers have been widely used in industrial systems such as chemical process, biomedical process, and in the main stea...
full textload frequency control in power systems using improved particle swarm optimization algorithm
the purpose of load frequency control is to reduce transient oscillation frequencies than its nominal valueand achieve zero steady-state error for it.a common technique used in real applications is to use theproportional integral controller (pi). but this controller has a longer settling time and a lot of extramutation in output response of system so it required that the parameters be adjusted ...
full textGene selection using hybrid particle swarm optimization and genetic algorithm
Selecting high discriminative genes from gene expression data has become an important research. Not only can this improve the performance of cancer classification, but it can also cut down the cost of medical diagnoses when a large number of noisy, redundant genes are filtered. In this paper, a hybrid Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) method is used for gene selection...
full textOptimization of grid independent diesel-based hybrid system for power generation using improved particle swarm optimization algorithm
The power supply of remote sites and applications at minimal cost and with low emissions is an important issue when discussing future energy concepts. This paper presents modeling and optimization of a photovoltaic (PV)/wind/diesel system with batteries storage for electrification to an off-grid remote area located in Rafsanjan, Iran. For this location, different hybrid systems are studied and ...
full textMy Resources
Journal title
volume 04 issue 04
pages 185- 190
publication date 2015-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023